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Inside the moving layer of a sheared granular bed
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The moving layer at the surface of a granular bed sheared by a viscous flow has been
investigated experimentally. The fluid and particle velocities have been measured
using particle imaging velocimetry (PIV) and particle tracking, respectively, with a
technique of matched index of refraction. The mean velocity profiles are found to
be parabolic. The models of Bagnold (Phil. Trans. R. Soc. Lond. A, vol. 249, 1956,
pp. 235–297) and Leighton & Acrivos (Chem. Engng Sci., vol. 41, 1986, pp. 1377–1384)
fail to account for the observations. A simplified model assuming uniform particle
concentration provides good agreement close to the threshold.

1. Introduction
Sand transport by rivers or tidal currents raises important issues in geophysics

and civil engineering, such as erosion and dune formation. Similar issues also arise
in multiphase flows in pipes, as in the petroleum or food industry. The fluid flow
is often turbulent, but viscous flows are encountered in situations of increasing
importance, such as heavy oil transportation in pipes. The present paper aims at a
better understanding of particle transport in viscous flow, when the moving particles
form a thin layer at the bed surface.

Several semi-empirical relationships have been proposed for the particle flux per
unit width Q as a function of the bed shear-stress τ . For turbulent flow, these
relationships are typically power laws with exponents close to 3/2 and numerical
coefficients increasing slightly with the shear stress (Ribberink 1998). These laws
unfortunately predict quite different transport rates near the threshold of particle
motion, and the physical mechanisms at work remain unclear. Experimental data
exhibit large scatter, in particular near the threshold which is itself not accurately
defined (Buffington & Montgomery 1997). Detailed measurements of velocity and
surface density of moving particles have been performed by Fernandez Luque & van
Beek (1976), showing that the surface-averaged velocity Up scales with the friction
velocity uτ =

√
τ/ρ and that the surface density Np scales with τ . The resulting flux

is Q = NpUp ∝ τ 3/2, in qualitative agreement with theoretical analyses by Bagnold
(1973) and Engelund & Fredsoe (1976). No measurements are available on the internal
structure of the moving layer.

For viscous flow, Bagnold (1956) and Leighton & Acrivos (1986) predicted Q ∝ τ 3

far from the threshold. The experiments of Charru, Mouilleron & Eiff (2004) showed
that close to the threshold the exponent is 2 rather than 3, with surface density
Np ∝ τ , as for turbulent flow, and particle velocity Up ∝ τ . This study was limited
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Figure 1. (a) Half cross-section of the annular channel (units in mm);
(b) measurement plane.

to the observation of the bed surface viewed from above, which cannot provide any
description of the internal structure of the moving layer. In a recent paper, Lobkovsky
et al. (2008) provided an experimental study of the threshold shear stress and particle
flux, finding a power law with an exponent close to 1.75; although one velocity profile
and one concentration profile were provided, with low spatial resolution, they were not
discussed.

In this paper, we report experiments aiming at a better understanding of the
dynamics of the moving layer, from measurements of velocity profiles of the fluid
and the particles, using a technique of matched refraction index. Experiments are
conducted in a viscous flow which allows a thorough investigation and comparison
with models. Section 2 describes the experimental set-up and the measurement
techniques. The results are presented in § 3 and discussed in § 4.

2. Experimental set-up
The experiments have been performed in an annular Plexiglas channel of mean

radius of 200 mm and rectangular cross-section �R × H = 40 × 16 mm2 (figure 1a).
The rotation of the upper plate creates a Couette flow which drags the particle
bed. The annular geometry was chosen to be able to study the long-time evolution
and avoid problems associated with the supply of fluid and particles in open-ended
rectilinear configurations.

In order to measure the velocities of both the fluid and the grains in the moving
layer, their indices of refraction n were matched. The fluid chosen is a mixture
of two plasticizing fluids (Santicizer 97 and 148) with n= 1.446 and n= 1.506,
below and above that of acrylic grains with n= 1.49, density ρp = 1180 kgm−3 and
median diameter d =0.50 mm. Particles were sieved and the distribution of diameters
was controlled using a granulometer (Mastersizer, Malvern), giving d10 = 0.41 mm,
d50 = 0.50 mm, d90 = 0.60 mm. The final mixture (ρ =1035 kgm−3, μ = 0.0218 Pa s)
was adjusted by including grains and analysing images taken in the measurement
configuration. Although an almost perfect match was achieved, small air bubbles
trapped within the acrylic grains during their manufacturing process led to a certain
amount of residual diffused light. To track the particles in the moving bed, 8% were
rendered visible again by staining with cationic fluorescent dye (Astrazon Brilliant
Red 4G 200 from DyStar Textilfarben), emitting in orange when excited by the green
laser wavelength. This permitted an optical high-pass filter to be used to remove
unwanted laser light.

The fluid phase was measured with a particle imaging velocimetry (PIV) technique,
whereas the grain phase was measured separately via particle tracking, with the same
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Figure 2. (a) Sample image of the particles inside the bed obtained with the index-matching
technique, with d = 0.5 mm; (b) typical particle trajectories with δt = 0.25 s. (c), (d ) Velocities
Up and Vp of individual particles; θ = 0.67, 13 particles tracked, 423 data points.

laser and camera set-up. The PIV technique requires the addition of small seeding
particles, here 10 μm hollow glass spheres of density 1110 kg m−3. A 2 mm thick
vertical laser sheet generated by a 30 mJ Nd:Yag double-pulse laser was positioned
in the centre of the channel (figure 1b) from above. A 1280 × 1024 px 12-bit CCD
camera with a 105 mm Nikon macro lens was used to capture the images of width
16 mm corresponding to spatial resolution of 78 px mm−1. For the PIV measurements,
five image pairs were acquired at 0.8 Hz with a PIV time interval adjusted to have a
maximum displacement of about 15 px. For the particle-tracking images, the image
acquisition frequency varied from 1 Hz to 4 Hz to optimize the tracking between 100
and 200 consecutive images.

The PIV images were processed with the software developed by Fincham &
Spedding (1997), with resolution of the velocity field of about d/2. The grain phase
was manually masked so that PIV displacements were only computed for the fluid
phase. The five velocity fields acquired yielded a total of 200 velocity profiles, which
were then averaged. The particles were manually tracked in the image series (see
figure 2a) with the Optimas software to compute and store the position of the
centroid of the particles (see Mouilleron 2002 for more details).

The experimental procedure consisted of first levelling the bed of particles by
resuspending the bed at high velocity and then stopping the flow. Particles settled,
forming a loose flat bed. The experiments were started at the lowest flow velocity,
and measurements were begun after bed equilibrium was reached, with reproducible
threshold Shields number θt = 0.12. (See Charru et al. 2004 for a discussion of the
armouring process leading to the bed at equilibrium.) The typical fluid thickness
was h = 7 mm, and the maximum upper plate velocity at the mean radius was
Uw = 0.158 m s−1 corresponding to shear rate γ = Uw/h= 23 s−1. The corresponding
flow Reynolds number Re = ρUwh/μ was 60, with negligible secondary flow due to
centrifugal forces (Charru et al. 2004). The bed shear stress is measured by the Shields
number

θ =
μγ

(ρp − ρ)gd
. (2.1)
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Its maximum value was 0.67, with corresponding particle Reynolds number Rep =
ργ d2/μ = 0.24. Finally, the sedimentation Reynolds number Res = ρUSd/μ was 0.022,
with Stokes settling velocity US = (ρp − ρf )gd2/18μ = 0.92 mms−1.

3. Results
For small upper plate velocity Uw , corresponding to Shields numbers θ lower than

the threshold θt = 0.12, no particle motion was observed. For increasing Uw , particles
near the bed surface began to move. For each θ , the number of tracked particles
was between 11 and 14 and the number of recorded positions between 362 and
553. Typical trajectories are shown in figure 2(b) for θ = 0.67. The upper particles
quickly cross the field of view, whereas deeper particles move very slowly. For the
reference level of the vertical position, a natural choice would be the bed surface at
rest. However, this level is not easy to define and measure with a desired accuracy
of d/10 = 0.05 mm. Moreover, this level slowly decreased during the experiment, by
about one particle diameter per hour, due to the slow secondary flow which causes
the particles to drift towards the inner sidewall of the channel. Thus, a more suitable
reference was found to be the level at which the linear fluid velocity profile above the
bed, as measured by PIV, extrapolates to zero by linear regression from the upper
plate down to the moving layer. The accuracy of this reference level was estimated to
be d/20. The vertical position y∞ is defined from this level.

From the successive positions of the tracked particles, their longitudinal and vertical
velocities Up and Vp were calculated from a first-order finite-difference scheme.
Figure 2(c, d ) displays all the measured Up and Vp for θ =0.67. It can be seen that
the thickness of the moving layer is about 3d and that Up is of a few millimetres per
second with large dispersion due to particle interactions; Vp is smaller by a factor of
about 10, with zero mean value as expected and the largest dispersion arising close
to y∞ = 0.

From the velocities Up of individual particles, the mean value up in bands of vertical
thickness d/3 was calculated. Figure 3(a) displays the mean velocity profiles for six
values of θ increasing from 0.20 to 0.67, normalized with US . For clarity, the profiles for
increasing θ have been shifted to the right by US . It appears that higher θ corresponds
to larger mean velocity and larger thickness of the moving layer, as expected. However,
the interface between the fixed bed and the moving layer is not sharp. Figure 3(b)
displays the same profiles, each normalized with its characteristic velocity γ d . It can
be seen that this simple scaling provides a good collapse of the data points.

In order to check the consistency of the present measurements with those of Charru
et al. (2004) obtained by tracking the particles as viewed from above (without index
matching), an averaged velocity Up =

∑
i Up,i/N was computed over the N-measured

Up , for each θ . Once divided by γ d , this velocity was found to be a constant for

θ � 0.52, Up/γ d = 0.11 ± 0.02, with no well-defined trend with θ . (A higher value of
0.16 was found for θ = 0.67.) This result agrees with Charru et al. (2004) who found
Up = 0.10 γ d .

Figure 3(b) also shows, in the inset, the fluid velocity uf , normalized with the
characteristic velocity γ d . Since all the profiles collapse on the same line in the bulk
of the flow due to the definition of the reference level, as was verified, only the region
close to the moving layer is shown in the figure. In this region, fluid velocity profiles are
curved due to interactions with the particles. Although the normalized profiles appear
nearly superposed, the depth at which the fluid velocity vanishes increases with θ .
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Figure 3. (a) Profiles of up/US for θ = 0.20, 0.26, 0.33, 0.39, 0.52 and 0.67, from left to right,
shifted horizontally by US for clarity; (b) up/γ d for the same θ . Inset: fluid velocity uf /γ d in
the region −1.5 <y∞/d < 1.5.
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Figure 4. Particle and fluid velocity profiles inside the moving layer, for six Shields numbers.

The particle and fluid velocities are plotted on the same plots in figure 4, for each θ .
It appears that for θ < 0.5 (figure 4a–d ), the fluid and particle velocities in the moving
layer are equal, with no significant slip velocity. However, for θ > 0.5, the fluid velocity
in the moving layer is higher than that of the particles. This slip velocity increases with
θ , the fluid velocity being about twice that of the particles for the highest θ = 0.67.
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Figure 5. (a) Velocity profile from Leighton & Acrivos (1986) and particle velocity
measurements for all θ (same markers as in figure 3); inset: concentration profiles; φ0 = 0.6. (b)
Velocity profiles from Bagnold (1956) and measurements, for θ/θt = 0.20 (- -) and 0.67 (—);
inset: concentration profiles; θt = 0.12, φ0 = 0.6. The origin of the y-axis is the bed at rest.

4. Analysis
In this section, the measurements are compared to the models of Bagnold (1956) and

Leighton & Acrivos (1986) and then to a simplified version of Bagnold’s (1956) model.

4.1. Viscous resuspension model of Leighton & Acrivos (1986)

The viscous resuspension theory of Leighton & Acrivos (1986) assumes particles
without inertia which follow the fluid with the same velocity. The particle concen-
tration φ results from an equilibrium between downward sedimentation and upward
diffusion induced by the gradient ∂yφ of the particle concentration. The sedimentation
flux is f (φ) US φ, where US is the Stokes settling velocity of a single particle and
f (φ) < 1 is the ‘hindrance function’ taking into account the retarding effect of the
other particles. The shear-induced diffusion flux is written as (τ/μf μ)(d2/4) D ∂yφ,
where μf (φ) is the relative effective viscosity; τ/μf μ is the local shear rate; and
D(φ) = O(1) is a dimensionless diffusion coefficient. Finally, f (φ), μf (φ) and D(φ)
are given by empirical relations (see Leighton & Acrivos 1986). The origin of the
vertical y-axis is set at the location of the interface at rest. By integrating the mass
balance from the bottom of the moving layer at y = −hb at which the concentration
is φ0, the height y at which the volume concentration is φ is found to be

y + hb

d
=

9θ

2

∫ φ0

φ

D

φ f μf

dφ. (4.1)

Defining the upper bound y = hm of the moving layer as the location at which the
concentration φ vanishes, the thicknesses hb and hm are found to be proportional to
the Shields number, hb/d = 11.8 θ and hm/d = 1.86 θ .

By integrating the x-momentum conservation equation with the boundary condition
u(−hb) = 0, the velocity u at which the concentration is φ is found to be

u

US

= 4

(
9θ

2

)2 ∫ φ0

φ

D

φ f μ2
f

dφ. (4.2)

Finally, numerical integration of (4.1) and (4.2) defines the velocity profile u(y)
through the parameter φ.

Figure 5(a) displays the velocity profile (4.2) with the measured velocity points,
for all θ . It also shows in the inset the concentration profile for which there are no
measurements. For comparison with the model, the origin of the vertical axis y∞
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used in the experiments had to be shifted to the bed at rest, using the relationship
y − y∞ = h∞, where the height h∞ is found from the model to be h∞ =1.63 θd (see
figure 5a). It can be seen that the data points do not fall well on the theoretical curve
and that their scatter is even larger than that displayed in figure 3(b) with the simple
scaling γ d . Choosing the Krieger–Dougherty viscosity μf =(1 − φ/φ0)

−2.5φ0 leads to
a slightly different velocity profile, but the agreement with the experiments remains
poor.

4.2. Bagnold’s (1956) model

Bagnold’s theory (Bagnold 1956) on sediment transport by viscous flow is based on
experiments he performed on suspensions of neutrally buoyant particles sheared in
an annular Couette flow (Bagnold 1954). By considering that the shear stress τ is the
sum of a fluid shear stress τf transmitted by the fluid and a particle shear stress τp

corresponding to encounters between particles and assuming that the fluid behaves as
a Newtonian fluid with effective viscosity given by Einstein’s law, these experiments
showed that, in the viscous regime which is relevant here, τp is given by

τp = μp(φ) μ
dup

dy
, μp(φ) = 2.2 λ3/2, (4.3)

where λ is a linear particle concentration related to φ by 1/λ= (φ0/φ)1/3 − 1. From
pressure measurements, Bagnold (1954) also found that the normal stress pp due to
particle interactions is related to the shear stress τp by a Coulomb-type friction law,
τp/pp = tan α, where the dynamic friction coefficient is tanα = 0.75 in the viscous
regime. Note that although these experiments have been criticized by Hunt et al.
(2002), they have not been repeated up to now.

In his analysis of a granular bed sheared by a viscous flow, Bagnold (1956) assumes
that the above results are still valid for heavy particles with strong concentration and
velocity gradients normal to the bed. For such a flow, the normal particle stress pp

at the vertical level y is the apparent weight per unit surface of the particles above
that level. Penetrating deeper into the moving layer, τp increases due to the increasing
granular pressure pp , so that τf decreases; the lower bound of the moving layer, say
at y = −hb with the origin of the y-axis at the bed surface at rest, is assumed to
correspond to τf being reduced to the threshold τt . With this ‘Bagnold’s hypothesis’,
hb is given by hb/d = (θ − θt )/φ0 tan α. Then, the concentration profile φ(Y ) can be
obtained from

tan α

∫ Y

−hb/d

φ(Y ) dY =
μf (φ)

μf (φ) + μp(φ)
θ − θt , Y = y/d. (4.4)

In particular, this equation gives the particle concentration just above the bed surface
Y = 0, lower than φ0. Neglecting any slip between the fluid and particles and assuming
that the velocity vanishes at y = −hb, the velocity profile is

up

US

=
uf

US

= 18 θ

∫ Y

−hb/d

dY

μf (φ) + μp(φ)
. (4.5)

Figure 5(b) displays the velocity profiles for the lowest and highest Shields numbers
of the experiments, θ = 0.20 and 0.67, with θt = 0.12 (Ouriemi et al. 2007); the
concentration profiles are shown in the inset. First, it can be observed that different
θ lead to different profiles, unlike the viscous resuspension theory which ignores
the threshold θt . Also in contrast with the viscous resuspension theory, the particle
concentration decreases slowly with height, as φ ∼ θ/y2, so that the velocity gradient
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reaches that of the pure fluid at large distances. Figure 5(b) also displays the
measured particle velocity for the same two Shields numbers. The major trend is
that Bagnold’s model overestimates the particle velocity; the same conclusion is true
for the intermediate θ , not shown in the figure for clarity.

4.3. Simplified Bagnold’s model

Agreement between observations and the above models could be improved by refining
the empirical closure laws; in particular, refining μp(φ) in Bagnold’s model could
avoid the slow decrease of the particle concentration φ(y) and make it zero at some
finite height hm above the fixed bed. In the absence of theoretical argument for such
refinements, a simple way is attempted here by assuming a uniform concentration φ.
Then, the fluid shear stress is found to be

τf = τ − pp tan α with pp = φ(ρp − ρf )g(hm − y). (4.6)

We consider that the location y = −hb at which the velocity vanishes corresponds to
the fluid shear stress being reduced to zero (rather than τt ; see Seminara, Solari &
Parker 2002 for a criticism of the Bagnold hypothesis). With the mass conservation
equation hbφ0 = (hm + hb)φ, the lower and upper limits of the moving layer are then
found to be hb/d = θ/(φ0 tan α) and (hm + hb)/d = θ/(φ tan α).

The fluid velocity profile is obtained from the momentum equation duf /dy =
τf /μf μ, as the quadratic relation

uf

US

=
9 φ tan α

μf

(
y + hb

d

)2

. (4.7)

This equation requires some numerical values for the parameters. For the friction
coefficient, the value tan α = 0.75 found by Bagnold (1954) for viscous flow can still
be used. Another close estimation can be obtained from Cassar, Nicolas & Pouliquen
(2005), who propose, from their experiments on avalanches, a law for the friction
coefficient as a function of a parameter I . This parameter is the ratio of a characteristic
falling time of a particle, here d/US , and the flow time scale γ −1; thus I =18θ which
here is larger than 2 and gives a friction coefficient between 0.7 and 0.8. The maximum
particle concentration is taken as φ0 = 0.6 as previously. The concentration φ can be
deduced from measurements of the thickness of the moving layer via the equation
(hb + hm)/d = θ/(φ tan α). This thickness was estimated from the lower and upper
positions of the moving particles and found to increase linearly with θ according
to (hb + hm)/d ≈ 5 θ . Comparison of these two relations for (hb + hm)/d gives
φ ≈ 0.27. Finally, the viscosity was deduced with the Krieger–Dougherty correlation
μf = (1 − φ/φ0)

−2.5φ0 , giving μf = 2.45.
For the particle velocity up , several corrections to the fluid velocity (4.7) might

be introduced. The first correction should take into account the threshold θt =0.12;
its order of magnitude is the fluid velocity at the height at which τf = τt ; this
height yt is found from the model to be yt + hb = 0.53d , with corresponding fluid
velocity 0.33US . A second correction is due to the curvature of the fluid velocity
profile (Faxen), which gives an overspeed of a fraction of US . A third correction
arises from the stresses transmitted to the fixed bed through long chains of contacts
between the particles (Darcy); with the classical permeability K =(1 − φ)3d2/180φ2,
this correction is also found to be a fraction of US . Finally, an inertial correction should
be introduced, accounting for small particle inertia. (In the present experiments, the
particle Reynolds number Rep is in the range 0.1–0.3.) Due to the uncertain modelling
of these corrections and since the above estimations show that they would be of a
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Figure 6. (a) Fluid velocity and (b) particle velocity, for all θ with the same markers as in
figure 3; in both plots the continuous line is the prediction (4.7) with solid markers at the
predicted upper surface of the moving layer hm, for each θ ; φ0 = 0.6, φ = 0.27, tanα = 0.75.

fraction of US , the particle velocity is here considered equal to that of the fluid, i.e.
up(y) = uf (y); this approximation is consistent with the observations reported in the
previous section, at least for θ < 0.5. Finally, the measured particle velocity will be
compared in the following to the velocity (4.7).

Figure 6(a) displays the measured fluid velocity for all θ , as a function of the
distance y + hb to the lower bound of the moving layer (with the measured vertical
positions y∞ shifted by y − y∞ =h∞, where h∞ was calculated from the model).
The continuous line is the fluid velocity prediction (4.7) with the parameter values
given above; the filled markers correspond to the predicted upper bounds hm(θ) of
the moving layer, each marker being identical to the open ones for the measured
velocities at the same θ . It can be seen that for θ < 0.5 the velocity points fall close to
the predicted curve, with scatter probably related to the difficulties of performing PIV
in between particles. However, for the two highest Shields numbers θ = 0.52 (�) and
θ =0.67 (�), the measured points are significantly above the predicted velocity. Figure
6(b) displays the particle velocity with the same scales and comparison with the same
velocity prediction (4.7). It can be seen that for θ < 0.5, the measured velocities collapse
on the theoretical prediction, with quite a small scatter. However, the data points for
θ =0.52 and θ = 0.67 fall again significantly above; the discrepancy is clearly related
to the slip velocity between the fluid and particles as shown in figure 4. Finally, it
can be noted that taking Einstein’s law instead of the Krieger–Dougherty correlation
for the viscosity, or varying the particle concentration in the range 0.25–0.30, changes
little the agreement between measurements and the theoretical prediction (4.7).

5. Summary and discussion
Measurements have been presented of both the particle and fluid velocities, up and

uf , within the moving layer of a granular bed sheared by a viscous flow (particle
Reynolds number Rep < 0.3). Once normalized with the characteristic velocity γ d ,
a reasonable collapse of the parabolic profiles was found in the explored range
of Shields number, θ � 0.67. The thickness of the moving layer was found to be
approximately equal to 5θd . For θ < 0.5 ≈ 4θt , the fluid and particle velocities are
equal. For θ > 0.5, a significant slip velocity is visible.

Measurements were then compared to the resuspension model of Leighton &
Acrivos (1986) and the model of Bagnold (1956). Neither of these models provides
good predictions. It was noted that the friction coefficient found by Bagnold (1954)
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for viscous flow, tan α =0.75, is very close to that deduced from the analysis of Cassar
et al. (2005) of their experiments on avalanches. A modification of Bagnold’s model
was then proposed, which assumes uniform particle concentration φ. The great
advantage of this assumption is that it provides an explicit quadratic relationship
for the fluid velocity uf (y), as a function of the distance y + hb to the fixed bed. A
discussion was then given of four corrections for the particle velocity up(y), arising
from the threshold, Faxen, Darcy and inertia effects, with the conclusion that these
corrections should be small, so that up = uf at the dominant order. With the mean
particle concentration φ = 0.27 ≈ (1/2)φ0 deduced from the experiments, the measured
velocity profiles collapse on the predicted curve for all θ < 0.5 ≈ 4θt , with no adjustable
parameter. Beyond this range, the model overpredicts the fluid and particle velocity,
a failure which is likely to be related to the observed appearance of significant slip
velocity.

An important practical question is that of the particle flux Q, which involves both
the particle velocity and concentration. Integration of the velocity profile with uniform
φ = (1/2)φ0 gives Q/USd =10.2 θ3; this result is similar to that of Leighton & Acrivos
(1986) which gives the same scaling with a lower coefficient of 7.5; Bagnold’s model
also predicts the same scaling with θ , but the flux diverges logarithmically with height
due to the slow decrease of the concentration (u ∼ y, φ ∼ y−2). However, the above
result is likely to overpredict the actual flow rate, since the high velocity in the upper
part of the moving layer is actually associated with φ much smaller than the assumed
uniform value. Indeed, with the surface density of moving particles Npd2 = 0.47(θ −θt )
found by Charru et al. (2004), the concentration of a monolayer of moving particles
is φ = 0.03 for a typical θ = 2θt = 0.24; this concentration is one order of magnitude
smaller than the value considered here. Finally, the particle flux found by Charru et al.
(2004) Q/USd = 0.44 θ(θ − θt ) is expected to provide better prediction, at least for
θ < 0.5, than the cubic power law.

In conclusion, particle and fluid velocity measurements in the moving layer have
been understood with a model which predicts the right profiles close to the threshold
(θ < 0.5). The development of a more general model requires a better knowledge
of fluid–particle interactions. For that, measurements of the particle concentration
are needed, together with an analysis of the velocity fluctuations. A related open
question is that of the relaxation time or length scale associated with time-varying or
space-varying flows. These questions merit further investigation.

We would like to acknowledge E. J. Hinch for fruitful suggestions and enlightening
comments. We also thank S. Cazin for his valuable technical help for the
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